Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable
نویسندگان
چکیده
To study the possible mechanism of microtubule turnover in interphase cells, we have used the 266-nm wavelength of a short-pulsed Nd/YAG laser to transect microtubules in situ in PtK2 cells at predefined regions. The regrowth and shrinkage of the transected microtubules have been examined by staining the treated cells with antitubulin mAb at various time points after laser irradiation. The results demonstrate that microtubules grow back into the transected zones individually; neither simultaneous growth nor shrinkage of all microtubules has been observed. The half-time of replacement of laser-dissociated microtubules is observed to be approximately 10 min. On the other hand, exposure of the core of the microtubule, which is expected to consist almost completely of GDP-tubulin, by transecting the internal regions of the microtubule does not render the remaining polymer catastrophically disassembled, and most transected microtubules with free minus ends do not quickly disappear. Taken together, these results suggest that most microtubules in cultured interphase cells exhibit some properties of dynamic instability (individual regrowth or shrinkage); however, other factors in addition to the hydrolysis of GTP-tubulin need to be involved in modulating the dynamics and the stability of these cytoplasmic microtubules.
منابع مشابه
Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory
In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...
متن کاملThe Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro
Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...
متن کاملنقش اسکلت سلولی در تشکیل لوله عصبی در جنین جوجه با استفاده از روش ایمونوپراکسیداز
The effect and arrangement of cytoskeleton (microtubules, microfilaments and neurofilaments) in neurulation of chick embryo examined by immunoperoxidase method from stage 6 to stage 12. The results were as follows: 1) Microtubules aggregated in the perinuclear region from which they radiated to take longitudinal course beneath the membrane. 2) Microfilaments were aggregated in the apical ends (...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملNanobiomechanical Properties of Microtubules
Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 107 شماره
صفحات -
تاریخ انتشار 1988